Differentiation

The twice-differentiable function f is defined for all real numbers and satisfies the following conditions: f(0) = 2, f'(0) = -4, and f''(0) = 3.

(a) The function g is given by $g(x) = e^{ax} + f(x)$ for all real numbers, where a is a constant. Find g'(0) and g''(0) in terms of a. Show all work.

$$g'(x) = e^{ax} + f(x)$$

$$g''(x) = e^{ax} \cdot \frac{d}{dx}ax + f'(x)$$

$$= ae^{ax} + f''(x)$$

$$g''(0) = ae^{0} + f''(0)$$

$$= a^{2}e^{0} + f''(0)$$

(b) The function h is given by $h(x) = \cos(kx) \cdot f(x)$ for all real numbers and k constant. Find h'(x) and write an equation for the line tangent to the graph of h at x=0.

$$h(x) = \cos(hx) \cdot f(x)$$

$$h'(x) = f(x) \cdot \frac{d}{dx} \cos(hx) + \cos(hx) \cdot f'(x)$$

$$= -\sin(hx) \cdot f(x) \cdot h + \cos(hx) \cdot f'(x)$$

$$h'(0) = -\sin(0) \cdot f(0) \cdot h + \cos(0) \cdot f'(0)$$

$$= 0 + 1 \cdot -4 = -4$$