Water is pumped into an underground tank at a constant rate of 8 gallons/minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \leq \mathrm{t} \leq 120$ minutes. At time $\mathrm{t}=0$, the tank contains 30 gallon of water.
(a) How many gallons of water leak out of the tank from time $t=0$ to $t=3$ minutes?

$$
\begin{aligned}
& \int_{a}^{x}(8-\sqrt{t+1}) d t m c \\
& f(t)=8 t-\frac{2(t+1)^{3 / 2}}{3}+c \\
& t=0 \quad 7 \\
& c=\frac{92}{3}{ }^{3}
\end{aligned}
$$

(b) How many gallons of water are in the tank at time $t=3$ minutes.

$$
8(3)-\frac{2(3+1)^{3 / 2}}{3}+\frac{92}{3}=\frac{148}{3}
$$

(c) Write an expression for $\mathrm{A}(\mathrm{t})$, the total number of gallons of water in the tank at time t.

$$
A(f)=8 t-\frac{2(t+1)^{3 / 2}}{3}+\frac{92}{3}
$$

(d) At what time t, for $0 \leq \mathrm{t} \leq 120$, is the amount of water in the tank a maximum? Justify.

\qquad

The number of gallons, $P(\mathrm{t})$, of a pollutant in a lake changes at the rate $P^{\prime}(\mathrm{t})=1-3 e^{-0.2 \sqrt{t}}$ gallons per day, where t is measured in days. There are 50 gallons of the pollutant in the lake at time $t=0$. The lake is considered to $\overline{\text { be }}$ safe when it contains 40 gallons or less of pollutant.
(a) Is the amount of pollutant increasing at time $t=9$? Why or why not?

(b) For what value of t will the number of gallons of pollutant be at its minimum? Justify.

(c) Is the lake safe when the number of gallons of pollutant is at is minimum? Justify.

$$
\begin{gathered}
50+\int_{0}^{30.17}\left(1-3 e^{-0.2 \sqrt{t}}\right) \text { ot }=35.107 \\
\text { Her. The lake would be sett. }
\end{gathered}
$$

(d) An investigator uses the tangent line approximation to $P(\mathrm{t})$ at $\mathrm{t}=0$ as a model for the amount of pollutant in the lake. At what time t does this model predict that the lake becomes safe?

$$
\begin{aligned}
& P^{\prime}(0)=1-3 e^{0}=-2 \\
& 50-2 x=82(x) \text { up }(x) \quad s(x) \\
& 4022 x \quad 40=50 \cdot 2 x \\
& x=5 \quad t=5
\end{aligned}
$$

