Graph

Two runners, A and B, run on a straight racetrack for $0 \le t \le 10$ seconds. The graph shows the velocity, in meters per second, of Runner A. The velocity, in meters per second, of Runner B is given by $v(t) = \frac{24t}{2t+3}$.

a) Find the velocity of Runner A and the velocity of Runner B at time t = 2 seconds. Indicate units of measure.

Runner A: 6 ml1
Runner B: 6.85 ml5 =
$$\frac{48}{7}$$

b) Find the acceleration of Runner A and the acceleration of Runner B at time t = 2 seconds. Indicate units of measure.

Runner B:
$$\frac{d}{dx} \left[\frac{24x}{24x^2} \right] = \frac{72}{(2x^43)^2} = 1.467 \text{ m/s}^2$$

c) Find the total distance run by Runner A and the total distance run by Runner B over the time interval [0,10]. Indicate units of measure.

$$\int_{0}^{\infty} \left(\frac{24c}{7t+7}\right) dt = 83.336$$
Runner 12: $\frac{1}{2}(3)(10) + (4)(10) = 85$
Aunor 18: 63.356

Graph

A car is traveling on a straight road. For $0 \le t \le 24$ seconds, the car's velocity v(t), in meters/sec, is modeled by the piecewise-linear function defined by the given graph.

a) Find $\int_0^{24} v(t)dt$. Using correct units, explain the meaning of this integral.

$$\frac{1}{2}(4)(20) + (12)(20) + \frac{1}{2}(8)(10)$$
= 40 + 240 + 80
= 360 meters. Displacement.

b) For each of v'(4) and v'(20), find the value or explain why it does not exist. Indicate units of measure.

v'(4) DUE. Dejective of a function raunot be cured from a function with charp points. The It must be cured throughout the intervel you are trying to use, in this raise
$$x \in (0, 24)$$
 $v'(2a) = -\frac{5}{2}$

c) Let a(t) be the car's acceleration at time t, in meters per second per second. For 0 < t < 24, write a piecewise-defined function for a(t).

d) Find the average rate of change of v over the interval $8 \le t \le 20$. Does the Mean Value Theorem guarantee a value of c, for 8 < c < 20, such that v'(c) is equal to this average rate of change? Why or why not?

Any rate of charge:
$$-\frac{70}{16}$$
: $-\frac{7}{4}$.

Mut morphot apply, as the function is not differentiable.

Annighbot the internal $KE(E, 20)$