Graph

Let f be a function defined on the closed interval $-5 \leq \mathrm{x} \leq 5$ with $\mathrm{f}(1)=3$. The graph of f^{\prime}. the derivative of f. consists of two semicircles and two line segments, as shown on the graph.

1. For $-5<x<5$, find all values of x at which f has a relative maximum. Justify.

2. For $-5<\mathrm{x}<5$, find all values of x at which the graph of f has a point of inflection.

Justify your answer.

$$
\begin{gathered}
\text { - When } f^{\prime \prime}=0 \text {. or DNB } \\
x=-4,-1,2 \text { (DNa }
\end{gathered}
$$

3. Find all intervals on which the graph of f is concave up and also has a positive slope.

Explain your reasoning.

$$
\begin{array}{cl}
f^{\prime \prime}>0 & \& \\
(-5,-4) \cup(1,2) & f^{\prime} 0 \\
(-5,-3) \cup(1,4) & \therefore(-5-4) \cup(1,2)
\end{array}
$$

4. Find the absolute minimum of $f(x)$ over the closed interval $[-5,5]$. Explaining your reasoning.

