Tables

AP Calculus	Tables	3 < x < 4
	1 < x < 2	2 2 x < 3 0 Negative 2 Positive 2 Negative
0	0 < x < 1 Positive	2 Positive -3 Negative Negative 0 Positive
f(x) -1	TOSTITUE I	ONE Negative 0
$f(x) = \frac{4}{-2}$	Negative 0 Positive	C: tryice differentiable except at $x = 2$.

Let f be a function that is continuous on the interval [0,4]. The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table, where DNE indicates that the

(a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify.

Rel max at
$$x=2$$
 as $F(x)$ charges from t for -

(b) On the axis provided, sketch the graph of a function that has all the characteristics of f.

(c) Let g be the function defined by $g(x) = \int_1^x f(t)dt$ on the open interval (0,4). For 0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answers.

g(x) =
$$\int_{-\infty}^{\infty} f(t)dt$$
 $g(x) = \int_{-\infty}^{\infty} f(t)dt$
 $g(x) = f(x) = 0$ or the at $x = 1$ or 3 [mex)

 $g'(x) = f(x) = 0$ or the at $x = 1$ or 3 [mex)

(d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify.