
2. The amount of water in a storage tank, in gallons, is modeled by a continuous function on the time interval $0 \leq t \leq 7$, where t is measured in hours. In this model, rates are given as follows:
(i) The rate at which water enters the tank is $f(t)=100 t^{2} \sin (\sqrt{t})$ gallons per hour for $0 \leq t \leq 7$.
(ii) The rate at which water leaves the tank is

$$
g(t)=\left\{\begin{array}{r}
250 \text { for } 0 \leq t<3 \\
2000 \text { for } 3<t \leq 7
\end{array}\right. \text { gallons per hour. }
$$

The graphs of f and g, which intersect at $t=1.617$ and $t=5.076$, are shown in the figure above. At time $t=0$, the amount of water in the tank is 5000 gallons.
(a) How many gallons of water enter the tank during the time interval $0 \leq t \leq 7$? Round your answer to the nearest gallon.
(b) For $0 \leq t \leq 7$, find the time intervals during which the amount of water in the tank is decreasing. Give a reason for each answer.
(c) For $0 \leq t \leq 7$, at what time t is the amount of water in the tank greatest? To the nearest gallon, compute the amount of water at this time. Justify your answer.

$$
\begin{aligned}
& \text { a. } \int_{0}^{7} 100 t^{2}(\sin \sqrt{t}) d t=8264 \text { gallons. } \\
& \text { b. } f(t)-g(t)<0 \quad g(t)>f(t) \therefore(0,1.617) 0(3,5.078) \\
& w(t)=5000+\int_{0}^{t}(f(x)-g(x)) d x \\
& w^{\prime}(t)=f(t)-g(t)=0 / \text { DeE } .
\end{aligned}
$$

