NAME_	James	Dins
AP Calculus AB		

DATE	
FRQ #39	

The Particle Problem

The velocity of a particle moving on the y-axis is given by $v(t) = \frac{e^{t-2}}{2t^2+3} - 4$ on the interval [1, 11]. At time t = 1, the particle is 3 units above the origin.

(a) During what time interval is the particle moving down?

$$\frac{e^{\frac{t^{2}}{2}}}{2r^{2}+3} - \frac{50}{4}$$

$$(0, 8.34)$$
Test point at (results to negative,

(b) What is the position of the particle when it is farthest south of the origin?

Minimum at
$$t = 8.34$$

$$\int \frac{e^{t-2}}{24^2 + 3} - 4 dt + C$$

$$= 5(t) = 1$$

(c) At what time is the particle's average velocity twice the instantaneous velocity on the interval [2, 8]?

$$\frac{1}{6} \int_{2}^{8} v(t)dt = -3.281$$

$$2v = -3.281$$

$$v = -1.64$$

$$t = 7.6449$$

(d) Find the total distance traveled by the particle during the time where t ϵ [1, 11].