A coffeepot has the shape of a cylinder with radius 5 inches, ns shown in the figure above. Let A be the depth of the coffee in the pot. measmed in inches. where h is a function of time t, measured in seconds. The volume V of coffee in the pot is changing at the rate of $-5 \pi \sqrt{h}$ cubic inches per second. (The volume V of n cylinder with radius r and height h is $V=\pi r^{2} h$.)
(a) Show that $\frac{d h}{d t}=-\frac{\sqrt{h}}{5}$.
(b) Given that $h=17$ at time $t=0$. solve the differential equation $\frac{d h}{d t}=-\frac{\sqrt{1}}{5}$ for h as a function of t.
(c) At what time t is the coffeepot empty?

$$
\begin{aligned}
& \text { a. } \quad V=\pi v^{2} h \quad \frac{d V}{d t}=-5 \pi \sqrt{h} \quad \text { b. } \frac{1}{\sqrt{h}} 2 h=-\frac{1}{j} d t \\
& \frac{\partial U}{\partial t}=\pi r^{2} \frac{\partial h}{\partial t} \\
& \int \frac{1}{\sqrt{h}} d h=-\int \frac{1}{5} d t \\
& -5 \pi \sqrt{h}=\pi r^{2} \frac{d h}{d t} \quad 2 \sqrt{h}=-\frac{1}{5} t+c \\
& 4-5 \sqrt{h}=v^{2} \frac{d h}{d t} \\
& -5 \sqrt{h}=25 \frac{d h}{d t} \\
& \left.\int \frac{d h}{d x}=-\frac{\sqrt{h}}{5}\right] \\
& 2 \sqrt{h}=-\frac{1}{5} t+62 \sqrt{17} \\
& \sqrt{h}=-\frac{1}{10} t+\sqrt{17} \\
& h=\left(-\frac{1}{10} t+\sqrt{17}\right)^{2} \\
& \text { c. } 10 \sqrt{67} \quad 0=\left(-\frac{1}{10}++\sqrt{17}\right)^{2} \\
& t=10 \sqrt{17}
\end{aligned}
$$

