NAME James Ding
AP Calculus

DATE
FRQ \#9

Area/Volume

Let R be the region in the first quadrant enclosed by the graphs of $f(x)=8 x^{3}$ and $g(x)=\sin (\pi x)$, as shown in the figure above.
(a) Write an equation for the line tangent to the graph of f at $x=\frac{1}{2}$.

$$
\begin{array}{lll}
f^{\prime}(x)=24 x^{2} & f(x)=8 x^{3} \\
f^{\prime}\left(\frac{1}{2}\right)=24\left(\frac{1}{2}\right)^{2}=6 & f\left(\frac{1}{2}\right)^{3} \\
& y-1=6\left(x-\frac{1}{2}\right)
\end{array}
$$

(b) Find the area of R.

$$
\int_{0}^{1 / 2}\left(\sin \pi x-8 x^{3}\right) d x=\left[-\frac{\cos \pi x}{\pi}-2 x^{4}\right]_{0}^{1 / 2}
$$

$$
n \%
$$

$$
=\frac{1}{\pi}-\frac{1}{8}=0.19331
$$

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line $y=1$.

DATE
AP Calculus

Area/Volume

A region in the first and second quadrants is bounded above by the graph of $\mathrm{y}=\frac{37}{1+x^{2}}$ and below by $\mathrm{y}=1$.
(a) Graph this region and find its area.

$$
S_{0}^{6} \int_{0}^{6} 2 \int_{0}^{6} 2\left(\frac{37}{1+x^{2}}-1\right) d x=2\left[\tan ^{-1} x-37-x\right]_{0}^{6}
$$

$$
=92.0179
$$

(b) Find the volume of the solid generated by revolving this region about the x-axis.

$$
\begin{aligned}
& \pi \int_{-6}^{6}\left(\left(\frac{37}{1+x^{2}}+1\right)^{2}-1^{2}\right) d x \\
& =2 \pi \int_{0}^{6}\left(\left(\frac{37}{1+x^{2}} \operatorname{tn} 5\right)^{2}-1\right) d x \\
& (=6705.2
\end{aligned}
$$

(c) The region is the base of a solid. For this solid, the cross sections perpendicular to the x -axis are semicircles. Find the volume of this solid.

$$
\begin{aligned}
A & =\frac{1}{2} \pi v^{2} \\
& =\frac{\pi}{2}\left(\frac{1}{2}\left(\frac{37}{1+x^{2}}-1\right)\right)^{2} \\
V & =\int_{-6}^{6}\left(\frac{\pi}{2}\left(\frac{1}{2}\left(\frac{37}{1+x^{2}}-1\right)\right)^{2}\right) d x
\end{aligned}
$$

\qquad

Area/Volume

Let R be a region bounded by the graphs of $\mathrm{y}=\sin (\pi x), \mathrm{y}=\mathrm{x}^{3}-4 \mathrm{x}$, and $\mathrm{x}=2$. Consider only $\mathrm{x} \geq 0$.
(a) Graph and find the area of R.

$$
\begin{aligned}
& \int_{0}^{2}\left(\sin \pi x-\left(x^{3}-4 x\right)\right) d x \\
& =\left[-\frac{\cos \pi x}{\pi}-\frac{1}{4} x^{4}+2 x^{22}\right]_{0}^{2}=\left(-\frac{1}{\pi}-4+8\right)-\left(-\frac{1}{\pi}\right)=4
\end{aligned}
$$

(b) The horizontal line $y=-2$ splits the region R into parts. Write, but do not evaluate, an integral expression for the area of the part of R that is below this horizontal line.

$$
\sqrt{\int_{0.531187}^{1.67513}\left(-2-\left(x^{3}-4 x\right)\right) d x}
$$

$$
x=0.53\{181
$$

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

$$
V=\int_{0}^{2}\left(\sin \pi x-\left(x^{3}-4 x\right)\right)^{2} d x=9.97834
$$

(d) The region R models the surface of a small pond. At all points in R at a distance x from the y-axis, the depth of the water is given by $h(x)=3-\mathrm{x}$. Find the volume of the water in the pond.

$$
\int_{0}^{2}\left(\sin \pi x-\left(x^{3}-4 x\right)\right)(3-x)=\left[\begin{array}{l}
86495
\end{array}\right.
$$

