- 1. The two would be attracted towards each other, just like magnets (equal forces). Electrons represent the negative side of the magnet, and protons represent the positive side. When you place both sides together, they attract.
- 2. Because the attraction force is the same, but protons are heavier compared to electrons, the electron will accelerate faster
- 3. Nope. Ohm's law is V = IR, if V is doubled and R remains constant, that means that I has to double, in other words, V is directly proportional to I
- 4. Using the resistance equation: $R = \frac{\rho L}{A}$

If ρ and *L* don't change, therefore *A* must change

$$A = \frac{1}{4}\pi d^{2}$$
$$4R = \frac{pL}{\frac{1}{4}A}$$
$$\frac{1}{4}A = \frac{1}{4}\pi (\frac{1}{2}d)^{2}$$

In order for resistance to be 4 times larger than B, wire A's diameter must be $\frac{1}{2}$ of wire B's. In other words, wire A's diameter must be wire A's radius

5. Because the volume remains constant, we know that if the length increases by two times, the cross-section area must change by its inverse, or $\frac{1}{2}$

$$R = \frac{\rho L}{A}$$
$$4R = \frac{\rho \times 2L}{\frac{1}{2}A}$$

Resistance increases by 4 times

6. Let Bulb A be
$$P = 25W$$

Let Bulb B be $P = 100W$
 $P_A = I_A V$
 $I_A = 0.208A$
 $V = I_A R_A$
 $R_A = 576.923\Omega$

$$P_{B} = I_{B}V$$

$$I_{B} = 0.833A$$

$$V = I_{B}R_{B}$$

$$R_{B} = 144.058\Omega$$

Bulb B (100W) has a smaller resistance compared to Bulb A (25W)

7. A. V = IR $R = 20\Omega$ B.

$$P = IV$$

$$P = 7.2W$$

$$7.2W \times \frac{1J}{1s} \times \frac{60s}{1m} = 432\frac{J}{m}$$
8. B=E>C=D>A=F
9. A.

$$V_T = \frac{110}{8}V = 13.75V$$
B.
Because this is a series circuit, $I_T = I_n$

$$V_n = I_T R_n$$

$$R_n = \frac{13.75V}{0.5A} = 27.5\Omega$$

$$P_n = I_T V_n = 6.875W$$

10. A.

Let R_p be the resistance of the parallel circuit (left two resistors)

Let R_s be the resistance of the right resistor (470 Ω)

$$\frac{1}{R_p} = \frac{1}{820\Omega} + \frac{1}{680\Omega}$$
$$R_p = 371.73\Omega$$

We can consider R_p as a giant resistor, so now it is a series circuit consisting of R_p and R_R

$$\begin{split} R_T &= R_p + R_R \\ R_T &= 841.73\Omega \\ \text{B.} \\ \text{By using the } R_T \text{from part A} \\ V_T &= I_T R_T \\ I_T &= 0.014A \\ \text{C.} \\ \text{Let } V_L \text{ be the voltage drop for the left resistor (820\Omega)} \\ \text{Let } V_M \text{be the voltage drop for the middle resistor (680\Omega)} \\ \text{Let } V_R \text{be the voltage drop for the right resistor (470\Omega)} \end{split}$$

Solving for current I = I = I

$$I_T - I_P - I_R$$

 $V_{R} = I_{R}R_{R} = 6.58V$

Because V_L and V_M are configured as parallel circuits, their voltage drop is the same

$$V_p = V_T - V_R = 5.42V$$

11. A.

Let *R* be the resistance of each resistor (they are equal) When open: $R_T = R_1 + R_3 = 2R$

When closed: $R_T = R_1 + \frac{R_2 R_3}{R_2 + R_3} = R_1 + \frac{1}{2}R_2$

The equivalent resistance decreases by $\frac{1}{2}R$ when *S* is closed B.

When open: $I_T = I_1 = I_3$

When closed: $I_T = I_1 = I_2 + I_3$

When closed, all resistors will have an increase in current except for I_3 , which has a decreases

С.

When open: $V_T = V_1 + V_3$ When closed: $V_T = V_1 + V_2 = V_1 + V_3$ We can conclude that: $V_2 = V_3$, therefore V_2 increases while V_3 decreases. Therefore V_1 increases D. When open: $P_T = I_T V_T$

When closed: $P_T = I_T V_T$

Because I_T increases, the power increases when S is open

12. This circuit can be drawn as

Therefore, the equation for the equivalent resistance of the circuit is $R_T = R_1 + R_{23R_{P456}}$ The resistance of the parallel circuit with R_4 , R_5 , and R_6 , can be represented with

$$\frac{1}{R_{P456}} = \frac{1}{R_4} + \frac{1}{R_5 + R_6}$$
$$R_{P456} = 1.86k\Omega$$

The resistance of the parallel circuit with R_2 , R_3 and R_{P456} can be represented with

$$R_{23R_{P456}} = \frac{1}{R_2} + \frac{1}{R_3 + R_{P456}}$$
$$R_{23R_{P456}} = 1.74k\Omega$$

Therefore: $R_T = 1.74k\Omega + 2.8k\Omega = 4.54k\Omega$ 13. $I_1 = I_2 + I_3$

Assumption: I_2 flows to the right

$$\begin{aligned} \text{Loop 1} \ V_1 \rightarrow R_2 \rightarrow R_1 \rightarrow V_1 \\ 9V \ - \ 18\Omega I_2 \ - \ 22\Omega I_1 = \ 0 \end{aligned}$$

 $Loop 2 V_3 \to R_2 \to V_3$ $6V + 18\Omega I_2 = 0$

Solving for system of equations:

$$I_{1} = \frac{15}{22}A$$

$$I_{2} = -\frac{1}{3}A$$

$$I_{3} = \frac{66}{66}A$$

$$I_{1} = 0.68A \leftarrow$$

$$I_2 = 0.33A \leftarrow$$

14. When another bulb is added to the circuit, the total current increases, which means the total resistance decreases. When total current increases, that means R_1 becomes brighter, which means the voltage drop is greater. When the voltage drop is greater, that means all the bulbs except R_1 in the parallel circuit become dimmer.