Chapter 11

Thursday, February 18, 2021 8:35 AM

I. Simple Harmonic Motion (SHM)

- a. Periodic Motion: Object vibrates/oscillates back and forth
- b. Equilibrium position:: Where the spring is at its natural length with no net force on block
- c. Restoring force: Force by spring causing motion toward equilibrium
 - i. Represented with Hooke's law: F = -kx (Force should always oppose displacement)
- ii. Note: Acceleration is not constant
- d. Relevant Symbols and Terms

Term	Symbol	Definition
Displacement	x	Distance of mass from equilibrium point
Amplitude	Α	Greatest distance from equilibrium point
Cycle		One complete back and forth movement
Period	Т	Time to complete a cycle
Frequency	f	Number of cycles per second

- e. Displacement (x): Distance of amss from equilibrium point
- f. Amplitude (A): Greatest distance from equilibrium point
- g. Cycle: One complete back and forth movement
- h. Period: Time to complete a cycle
- i. Frequency: Number of cycles per second
- j. SHM: When a vibrating system exerts a restoring force directly proportional to the negative displacement
- k. SHO: A system that exhibits SHM
- II. Energy in a SHO
 - a. Spring Mass System:
 - i. Finding Total Energy
 - 1) At any given point: $E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$
 - 2) Using Potential Energy: $E = \frac{1}{2}kA^2$ (Relevant to $\frac{1}{2}kx^2$)
 - 3) Using Kinetic Energy: $E = \frac{1}{2}mv_1^2$ (Max velocity will show total energy)
 - ii. Period and Frequency
 - 1) Amplitude does not affect period

2) Period: $T = 2\pi - \frac{!}{!}$

- III. Simple Pendulum
 - a. Setup
 - i. Small object hanging from a lightweight cord
 - ii. Cord's mass is small compared to object's mass
 - iii. Negligible friction and air resistance
 - b. Is a pendulum a SHO?
 - i. Restoring force for a pendulum: Tangent component of weight

Conclusions:

• $\frac{1}{2}kA^+ = \frac{1}{2}mv_!^+$

• $v = \pm A 9 \frac{k}{m}$

$$T = \frac{t}{c} = \frac{time}{cycles}$$

- 1) $F = mg \sin(\theta)$
- 2) Angles less than 15° : $F = mg\theta$
- 3) $x = r\theta = L\theta$

4)
$$F = -mg 2\frac{x}{L}3 = -2\frac{mg}{L}3x$$

- 5) Note: θ is in radians
- 6) Mass, gravity and length are constants
- 7) Noticing similarities
 - a) F = -kx (Hooke's law)

b)
$$F = -2\frac{mg}{L}3x$$

c. Period and Frequency

i. Period: $T = 2\pi - \frac{5}{2\pi}$

- IV. Wave Motion
 - a. Waves: Carries energy from one place to another without physically moving to that place
 - i. Crest/Trough: From highest point to bottom
 - ii. Amplitude: From the center to crest or trough
 - iii. Wavelength(λ): The length between the crests or troughs
 - iv. Frequency/Period:

v. Wave Velocity: $v = \frac{\&}{I} = \frac{I}{\lambda} = \lambda f$

- V. Types of Waves
 - a. Mechanical Waves: Requires Medium
 - i. Transverse: Direction of wave and motion of medium are perpendicular
 - ii. Longitudinal: Direction of wave and motion of medium are parallel
 - 1) Crests: Compressions
 - 2) Troughs: Rarefactions
 - b. Electromagnetic Wave: Doesn't require medium
 - i. Radio
 - ii. Microwave
 - iii. Infrared
 - iv. Visible
 - v. Ultraviolet
 - vi. X-ray
 - vii. Gamma ray
- VI. Energy Transported by Waves
 - a. Every particle in a wave undergoes SHM
 - b. Each particle's energy: $E = \frac{*}{+}kA^+$
- VII. Interference
 - a. Interference: The interaction of two waves that pass the same region at the same time
 - b. Principle of Super Position
 - i. Resultant displacement: Sum of individual displacements
 - ii. Destructive interference: Less resultant displacement
 - iii. Constructive: Greater resultant displacement
 - c. Phase: Relative position between waves
 - i. In phase: Crests and troughs are aligned (doesn't have to be identical)
 - 1) Causes constructive interference
 - ii. Out of phase
 - 1) Crests and troughs are misaligned
 - 2) Out of phase by $\frac{1}{4}$ wavelength: Destructive interference
 - 3) Out of phase by $\frac{1}{2}$ wavelength and same amplitude: Destructive interference
 - 4) Out of phase not by $\frac{1}{2}$ wavelength: Partially destructive interference
- VIII. Resonance
 - a. All systems vibrate at their own individual frequency (natural frequency)
 - b. Forced vibration: External force that has its own frequency
 - c. Resonance: When a forced vibration on an object matches the natural frequency of that object and a large amplitude is reached (constructive interference)
- IX. Standing Waves
 - a. Standing wave: A wave that doesn't seem to travel
 - b. Node: Points of completely destructive interference
 - c. Antinode: Points of constructive interference; greatest amplitude
 - d. Mode: Number of antinodes in the standing wave
 - e. Resonant Frequencies: Frequencies that can cause a standing wave
 - i. Each resonant frequency is a multiple of the lowest frequency
 - f. Fundamental Frequency: Lowest Resonant Frequency
 - i. Overtone: The other natural frequencies
 - ii. Harmonic: Each multiple of the fundamental frequency