Chapter 12

Thursday, February 25, 2021 8:37 AM

I. Characteristics of Sound

- a. Sound is a mechanical wave
 - i. Requires matter and travels as a longitudinal wave
- b. Speed of sound is dependent on material
 - i. Denser means faster
 - ii. Sound at 20°C travels at 343 $\frac{m}{s}$
- c. Relationship between pitch and frequency
 - i. Pitch is directly proportional to frequency and the other way around
- II. Graphs of Sound
 - a. Displacement Graph: Plots the movement of each particle relative to their respective equilibrium points
 - b. Pressure Graph: Plots the changing pressure of each point in the wave relative to the equilibrium pressure
 - c. f(s) = m
 - i. Period: Wavelength
 - ii. Amplitude: Midline to peak
 - d. f(x) = m
 - i. Wavelength: Node to Node, Antinode to Antinode
- III. Sources of Sound
 - a. String Instruments: The string vibrates as a standing wave of lowest resonant frequency (the fundamental
 - frequency)

$$v = \left(\frac{F_{T}L}{m}\right)$$

ii.
$$f_! = \frac{v}{\lambda} = \frac{v}{2L} = \frac{1}{2} \left(\frac{F_{"}}{mL} \right)$$

- iii. Increasing Fundamental Frequency
 - 1) Increase tension
 - 2) Decrease length
- 3) Decrease mass
- b. 1st Harmonic: 1/2 the wavelength
- c. Wind Instruments: Sound is formed by the vibration of standing weaves in the air columns
 - i. Open Tubes: Node Node
 - 1) First Harmonic (Pressure Graph)

a)
$$\lambda_1 = 2L$$

b) $v = \lambda f$
c) $f_1 = \frac{v}{2L}$
2) Universal Rules
a) $L = \frac{n\lambda_{\$}}{2}$

b)
$$f_{\$} = \frac{2}{v} = \frac{nv}{2} = nf_1$$

• When a wave changes mediums, the frequency stays the same

Note: *L* is $\frac{1}{96}$ the wavelength

Open tubes are measured in $\frac{1}{\%}$ wavelengths (Even or odd) $\frac{2}{\$}$ Harmonic Wavelength

ii. Closed Tube1) First Harmonic

a) Node at opening; antinode at closed end

b)
$$\lambda_1 = 4L$$

c) $\nu = \lambda f$

d)
$$f_1 = \frac{v}{4L}$$

2) Universal Rules

a)
$$L = \frac{n\lambda_{\$}}{4}$$

b)
$$f_{\$} = \frac{nv}{4L} = nf_{!}$$

- IV. Interference of Sound Waves; Beats
 - a. Scenario:
 - i. If two speakers in different locations emit the same frequency of sound
 - 1) Constructive interference occurs at certain spots, making it loud
 - 2) Destructive interference occurs at certain spots, making the sound soft or absent
 - b. Beats
 - i. Two frequencies that are similar but unequal will have partially constructive/destructive interference
 - ii. When we hear beats, we hear the max amplitudes of the resulting wave
 - iii. Beat Frequency: Frequency of the max amplitudes of the resulting waves
 - 1) Equals the difference between two frequencies
- V. Doppler Effect: Apparent change in frequency due to relative motion between source and receiver
 - a. Bug Example
 - i. Case 1: Stationary bug bobbing up and down in water
 - 1) Ripples are concentric circles equally spaced
 - 2) Observers on both sides of bug see ripples of same frequency
 - ii. Case 2: Bug moves and bobs up and down in water
 - 1) Centers of succeeding circ les move in direction of bug's motion

Closed tubes are measured in $\frac{!}{\&}$ wavelengths (Odds) $\frac{\&}{\$}$ Harmonic Wavelength