Chapter 2

I. 2-1: Reference Frames and Displacement:
a. Reference Frame: The "perspective
i. If you are on a train that is moving 50 mph , a person outside the train would say you are going 50 mph (Frame of Ref: The earth)
ii. If you are on a train that is moving 50 mph , a person inside the train would say you are not moving (Frame of Ref: In the train)
b. Displacement: How far the object moved from its starting point to endpoint
$d=x-x_{!}$i.e [Distance Traveled - Starting Distance]
d direction
d. Δ (Delta) stands for change in
II. 2-2: Average Velocity
a. Speed: How far an object travels in a given time interval (regardless of direction)

Average speed: The total distance traveled along its path divided by the time it takes to travel this distance
$\bar{s}=\frac{\text { distance traveled }}{\text { time }}=\frac{d "-d_{\#}}{t}=\frac{\Delta d}{\Delta t}$
b. Average velocity: The total displacement along its path divided by the time it takes to travel
$\bar{v}=\frac{\text { displacement }}{\text { time elapsed }}=\frac{d}{t_{-1}-t_{\#}}=\frac{d}{\Delta t}$
c. Speed vs. Velocity:
i. Speed is simply a positive number
ii. Velocity is the Magnitude of how fast the object is going and the direction in which it is moving
III. 2-3: Instantaneous Velocity
a. Instantaneous Velocity: The average velocity during an infinitesimally short time interval
$v=\lim _{\Phi \rightarrow!} \frac{\Delta x}{\Delta t}$
. The instantaneous speed always equals the magnitude of the instantaneous velocity
c. If an object moves at a constant velocity during a particular time interval,
IV. 2-4: Acceleration
a. Average Acceleration:
$\bar{a}=\frac{\text { change in }}{\text { time elapsed }} \stackrel{\text { vec } \Delta t y y}{\Delta t}=\frac{v_{n}-v_{\#}}{t_{1}-t_{\#}}$
b. Instantaneous Acceleration: The average acceleration during an infinitesimally short time interval
$a=\lim _{\phi \rightarrow!} \frac{\Delta v}{\Delta t}$
c. Acceleration tells us how quickly velocity changes, whereas velocity tells us how quickly the position changes d. Deceleration: When an object is slowing down
. Deceleration means the magnitude of velocity is decreasing; it does not necessarily mean acceleration is negative
We have deceleration whenever the magnitude of the velocity is decreasing, and then the velocity and acceleration point in the opposite directions
V. 2-5: Motion at a Constant Acceleration
a. Finding the constant acceleration
$a=\frac{\text { velocity }- \text { starting } \text { velocity }}{\text { time elapsed }}$
b. Determining the velocity of an object after any elapsed time
$v=$ initial velocity + acceleration \times time elapsed
i. Example:

Given: $\left(a=\frac{\varepsilon .!(}{)!}, t=6.0 \mathrm{~s}\right)$
Starts from Rest ($v_{!}=0, t_{!}=0$)
$v=\frac{4.0 \mathrm{~m}}{s^{\prime \prime}} \times 6.0 \mathrm{~s}=\frac{24 \mathrm{~m}}{s}$
c. Calculating position of an object after a certain time when it is undergoing constant acceleration
$x=$ starting \quad position + starting \quad velocity \times time $\quad \begin{aligned} & \text { accelapation } \times \text { time }\end{aligned}$
d. Calculating velocity" without given time
velocity" $=$ (initial velocity") $+2 \times$ acceleration(displacement) $)$
Average Velocity
e. Average Velocity
$\begin{array}{llc}\text { average } & \text { velocity } \begin{array}{l}\text { initial } \\ =\end{array} & \text { velocity }+ \text { final velocity } \\ 2\end{array}$
f. Variables
i. Initial Velocity $\left(v_{!}\right)$
ii. Final Velocity $\left(v_{*}\right)$
ii. Displacement $(\Delta x)=\left(x-x_{!}\right)$
iv. Acceleration
g. If you know th

Without air resistance, All objects fall with the same constant acceleration
(Weight) (Size) (Shape) don't change the acceleration
b. Free Fall: No air resistance
c. Gravitational Acceleration: $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
VII. 2-8: Graphical Analysis
a. Sketching vs. Graph
i. Sketch is rough, Graph is precise
b. Setting up a Graph
i. x-axis (independent variable)
ii. y-axis (dependent on x-axis)

Important Equations (For Motion at a constant Acceleration):

- $v=\frac{d}{t}$
- $v=\stackrel{t}{v_{1}}+a t$
- $x=x_{!}+v_{!} t+\frac{1}{2} a t$
- $v^{\prime \prime}=v_{1}^{\prime \prime}+2 a\left(x-x_{1}\right)$
- $\bar{v}=\frac{v+v_{1}}{2}$

General Things to keep in mind

- If position...
- Remains constant: The velocity is 0 , therefore the acceleration remains at 0 Is Linear: The velocity remains a constant number, therefore acceleration is 0 Is a curve: The velocity is increasing/decreasing, therefore the object is accelerating
- Velocity: The rate of change of the objects position with respect to its frame of reference (aka direction)
- Velocity changes if
- Displacement changes
- Direction changes
- Acceleration: How fast the object's velocity is changing

Linearizing Graphs:

- So we can see the change in velocity (aka see the acceleration)
- How to:
- x-axis: $t^{\prime \prime}$
- y-axis: v
$t_{\text {}}$ is basically the moment where you start a stopwatch
t is basically the total time $\left(t_{n}-t_{\#}\right)$

