Chapter 3
Saturday, October 3,2020 9:35 AM
I. 3-1: Vector and Scalars
a. Vector: A object that has both magnitude and direction
b. Scalar (Quantities): Quantities that are specified by numbers or units (mass, temperature, time, etc.)
II. 3-2: Addition of Vectors (Graphing)
a. One Dimensional
i. Finding resultant displacement: Simple Arithmetic
b. Two Dimensional
i. Finding resultant displacement: $D_{!}=D_{"}+D_{\#}+D_{\$}$ (Note that it's not magnitude but the vector itself)
ii. Methods for showing resultant displacement

1) Tail-to-tip Method: Adding the vectors to the previous vector
2) Parallelogram Method: Adding the vectors to the starting point
III. 3-3: Subtraction of Vectors, and Multiplication of a Vector by a Scalar
a. Negative Vectors: Vectors that go in the opposite direction
IV. 3-4: Adding Vectors by Components
a. Vector Components: $V_{\%}$ represents the x-axis (scalar), $V_{\&}$ represents the y-axis (scalar)
b. Finding $V_{\%}, V_{\&}, \theta$ or $V_{!}$using SOH CAH TOA/Pythagorean Threoam
i. $\quad V_{\%}=\cos (\theta) \times V_{!}$
ii. $\quad V_{\&}=\sin (\theta) \times V_{!}$
iii. $\quad V_{!}=0 V_{\%}^{\#}+V_{\&}^{\#}$
iv. $\theta=\tan ^{(")}\left(\frac{V_{\&}}{V_{0}}\right)$
V. 3-5: Projectile Motion
a. Finding the Peak Height
i. Step 1: Finding what time the peak occurred at (using vertical component)
3) Use $v_{\&}=v_{)}+g t$, solve for t
4) Final Equation: $t=\frac{\text { * }^{*}!}{+}\left(v_{\&}\right.$ must be 0$)$
ii. Step 2: Using time to find the peak height (using vertical component)
5) Use $x=x_{)}+v_{)} t+\frac{"}{\#} g t^{\#}$, solve for x, substitute time from Step 1
6) Final Equation: $x=x,+v_{)} t+\frac{"}{\#} g t^{\#}$
b. Finding total hang time
i. Step 1: Solve for time (using vertical component)
7) Use $x=x_{y}+v_{y} t+\frac{{ }_{\#}^{\prime}}{\#} g t^{\#}$, solve for time
8) Final Equation: $\left.0=\frac{-}{\#} g t^{\#}+v_{)} t+x\right)(x$ must equal 0 , this would require quadratic formula)
$a=\frac{"}{\#} g$ (with no air resistance)
$b=v$)
$c=x$) (most of the time will be 0)
c. Finding total distance traveled
i. Step 1: Solve for total time (using vertical component)
9) See V.b.i
ii. Step 2: Solve for distance traveled (using horizontal component)
10) Use $x=x,+v_{)} t+\frac{"}{\#} a t^{\#}$, solve for x, substitute time from Step 1
11) Final Equation: $x=x_{)}+v_{p} t$ (Acceleration is 0 , which cancels $a t^{\#}$)
d. Calculating the vector after a certain amount of time
i. Step 1: Finding the vertical component change (using vertical component)
12) Use $v_{\&}=v_{)}+g t$, solve for $v_{\&}$
ii. Step 2: Finding the magnitude of $V_{!}$
13) Use $V_{!}=0 v_{\&}^{\#}+v_{\%}^{\#}$, solve for $V_{!}$, substitute $v_{\&}$ with $v_{\&}$ from Step 1
iii. Step 3: Finding the angle
14) $\theta=\tan { }^{(")}\left(\frac{V_{\&}}{V_{\%}}\right)$
iv. Final Answer:

The vector magnitude is (answer from step 2) and it is (answer from step 3)
degrees above the horizontal
VI. 3-6: Solving Problems Involving Projectile Motion
a. See V.a-d
VII. 3-7: Projectile Motion is Parabolic
a. The title of this section explains this section very clearly
VIII. 3-8: Relative Velocity
a. Very similar to II

