Chapter 3

Saturday, October 3, 2020 9:35 AM

- I. 3-1: Vector and Scalars
 - a. Vector: A object that has both magnitude and direction
 - b. Scalar (Quantities): Quantities that are specified by numbers or units (mass, temperature, time, etc.)
- II. 3-2: Addition of Vectors (Graphing)
 - a. One Dimensional
 - i. Finding resultant displacement: Simple Arithmetic
 - b. Two Dimensional
 - i. Finding resultant displacement: $D_{!} = D_{"} + D_{\#} + D_{\$}$ (Note that it's not magnitude but the vector itself)
 - ii. Methods for showing resultant displacement
 - 1) Tail-to-tip Method: Adding the vectors to the previous vector
 - 2) Parallelogram Method: Adding the vectors to the starting point
- III. 3-3: Subtraction of Vectors, and Multiplication of a Vector by a Scalar
 - a. Negative Vectors: Vectors that go in the opposite direction
- IV. 3-4: Adding Vectors by Components
 - a. Vector Components: $V_{\%}$ represents the x-axis (scalar), $V_{\&}$ represents the y-axis (scalar)
 - b. Finding $V_{\%}$ $V_{\&}$, θ or $V_{!}$ using SOH CAH TOA/Pythagorean Threoam
 - i. $V_{\%} = \cos(\theta) \times V_!$

ii.
$$V_{\&} = \sin(\theta) \times V_{!}$$

iii.
$$V_! = 0V_{\%}^{\ \#} + V_{\&}^{\ \#}$$

iv.
$$\theta = \tan^{(")} \left(\frac{V_{\&}}{V_{\%}} \right)$$

- V. 3-5: Projectile Motion
 - a. Finding the Peak Height
 - i. Step 1: Finding what time the peak occurred at (using vertical component)
 - 1) Use $v_{\&} = v_{\downarrow} + gt$, solve for t
 - 2) Final Equation: $t = \frac{\binom{*}{1}}{+}$ ($v_{\&}$ must be 0)
 - ii. Step 2: Using time to find the peak height (using vertical component)
 - 1) Use $x = x_1 + v_1 t + \frac{1}{4}gt^{\#}$, solve for x, substitute time from Step 1

2) Final Equation:
$$x = x_1 + v_1 t + \frac{\pi}{4}gt^{\dagger}$$

- b. Finding total hang time
 - i. Step 1: Solve for time (using vertical component)

1) Use
$$x = x_{1} + v_{1}t + \frac{\pi}{4}gt^{\#}$$
, solve for time

2) Final Equation: $0 = \frac{\pi}{4}gt^{\#} + v_{j}t + x_{j}$ (x must equal 0, this would require quadratic formula)

$$a = \frac{\pi}{4}g$$
 (with no air resistance)

$$b = v_{j}$$

 $c = x_{j}$ (most of the time will be 0)

- c. Finding total distance traveled
 - i. Step 1: Solve for total time (using vertical component)

1) See V.b.i

- ii. Step 2: Solve for distance traveled (using horizontal component)
 - 1) Use $x = x_1 + v_1 t + \frac{1}{4} at^{\#}$, solve for x, substitute time from Step 1
 - 2) Final Equation: $x = x_1 + v_1 t$ (Acceleration is 0, which cancels $at^{\#}$)
- d. Calculating the vector after a certain amount of time
 - i. Step 1: Finding the vertical component change (using vertical component)
 - 1) Use $v_{\&} = v_{)} + gt$, solve for $v_{\&}$
 - ii. Step 2: Finding the magnitude of $V_!$
 - 1) Use $V_! = 0v_{\&}^{\#} + v_{\%}^{\#}$ solve for $V_!$, substitute $v_{\&}$ with $v_{\&}$ from Step 1
 - iii. Step 3: Finding the angle

1)
$$\theta = \tan (" (\frac{V_{\&}}{V_{\%}}))$$

iv. Final Answer:

The vector magnitude is (answer from step 2) and it is (answer from step 3) degrees above the horizontal

- VI. 3-6: Solving Problems Involving Projectile Motion
 - a. See V.a-d
- VII. 3-7: Projectile Motion is Parabolic
 - a. The title of this section explains this section very clearly
- VIII. 3-8: Relative Velocity
 - a. Very similar to II