Chapter 8

Monday, January 25, 2021 8:47 AM
I. Angular Quantities
a. Axis of rotation: The straight line through all fixed points of a rotating rigid body around which all other
points of the body move in circles
b. Radian: The angle subtend by an arc whose length is equal to the radius
i. $\theta=\frac{l}{r}$
ii. $\quad 360^{\circ}=2 \pi \mathrm{rad}$
c. Angular Velocity
i. Average Angular Velocity: $\omega\left(=\frac{\Delta!}{\Delta^{\prime \prime}}\right.$
ii. Instantaneous Angular Velocity: $\omega=\lim _{\Delta^{\prime \prime} \rightarrow 0} \frac{\Delta!}{\Delta^{\prime \prime}}$
d. Angular Acceleration
i. Average Angular Acceleration: $\alpha^{*}=\frac{\Delta \#}{\Delta^{\prime \prime}}$
ii. Instantaneous Angular Acceleration: $\alpha=\lim _{\Delta^{\prime \prime} \rightarrow 0} \frac{\Delta \#}{\Delta^{\prime \prime}}$
e. Linear Quantities:
i. Velocity: $v=r \omega$
ii. Rotational Acceleration: $a_{\$}=\frac{\% / 6}{\&}=\omega^{2} r$
iii. Tangential Acceleration: $a_{\text {" }} \stackrel{\&}{=} r \alpha$
II. Constant Angular Acceleration
i. Angular and Linear Equation Relationships Note: θ is in radians.

Angular	Linear
$\omega=\omega)+\alpha t$	$v=v_{0}+a t$
$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$	$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$	$v^{2}=v_{0}^{2}+2 a x$
$\omega\left(=\frac{\omega+\omega_{0}}{2}\right.$	$\bar{v}=\frac{v+v_{0}}{2}$

III. Rolling Motion (Without Slipping)
a. Rolling without slipping: $v=r \omega$
IV. Torque b. Torque: $\tau=r F_{*}=r F \sin \theta$
V. Rotational Dynamics; Torque and Rotational Inertia
a. Torque of single particle: $\tau=m r^{2} \alpha$
b. Net torque: $\Sigma \tau=I \alpha$
VI. Solving Problems in Rotational Dynamics
VII. Rotational Kinetic Energy
a. Kinetic Energy of rotating object: $K E= \pm I \omega$,
b. Kinetic Energy of system (linear + rotational): $\Sigma K E={ }^{ \pm} m v^{\prime}+{ }^{ \pm} I \omega^{\prime}$
c. Work done by Torque: $W=\tau \Delta \theta$
VIII. Angular Momentum and Its Conservation
a. Law of conservation of momentum: The total angular momentum of a rotating object remains constant if the net torque acting on it is zero
IX. Vector Nature of Angular Quantities
a. Right hand rule: When the fingers of the right hand are curled around the rotation axis and point in the direction of the rotation, then the thumb points in the direction $\omega 99^{-}$
b. Angular Momentum: $\overrightarrow{A \rightarrow}=I \omega 99 \overrightarrow{ }=m v F \tau \Delta t$

Relevant Equations:

- Arc Length: $\pi d \times \frac{!}{-/}$ Units:
- $\omega: \frac{r a d s}{s}$
- $\alpha: \frac{\text { rads }}{s^{\prime}}$
- $\tau: m \mathrm{~A} N$
- I: kg A m

Object	Location of Axis	Variables	Equation
Thin hoop	Through center	Radius: r	mr^2
Thin hoop	Through central diameter	Radius: r Width:	$\begin{aligned} & 1 / 2 \mathrm{mr}^{\wedge} 2+1 / 12 \\ & \mathrm{mw}^{\wedge} 2 \end{aligned}$
Solid Cylinder	Through center	Radius: r	$1 / 2 \mathrm{mr}$ ^2
Hollow Cylinder	Through center	Inner Radius: r_{+} Outer Radius: r	$\begin{aligned} & 1 / 2 \\ & 2) \\ & m\left(r_{-} 1^{\wedge} 2+r_{-} 2\right. \end{aligned}$
Uniform Sphere	Through center	Radius: r	$2 / 5 \mathrm{mr} \wedge 2$
Long Uniform Rod	Through center	Length: 1	$1 / 12 \mathrm{ml}$ ^2
Long Uniform Rod	Through end	Length: 1	$1 / 3 \mathrm{ml}{ }^{\wedge} 2$
Rectangular Thin Plate	Through center	Length: 1 Width: w	$1 / 12 \mathrm{~m}\left(\mathrm{l}^{\wedge} 2+\mathrm{w}^{\wedge} 2\right)$
Satellite	Through end	Radius: r	

Linear and Rotational Relationships

Linear	Type	Rotational	Relation
x	Displacement	θ	$x=r \theta$
v	Velocity	ω	$v=r \omega$
$a_{" \prime \prime}$	Acceleration	α	$a_{" \prime(}=r \alpha$

