I. Chapter 16
a. Static Electricity; Electric Charge and Its Conversion
i. Unlike charges attract; like charges repe
i. Law of conversation of electric charge

1) The net amount of electric charge produced in any process is zero
2) No net electric charge can be created or destroyed
b. Induced Charge; the Electroscope

Charging by conduction: Where electrons get transferred and objects end up with the sign of charge

I. Electric Currents
a. Electric Current
i. Circuit: When a continuous conducting path is connected between the terminals of a battery
ii. Electric Current: A flow of charge
ii. Ampere: Current, measured in coulombs per second
iv. Complete Circuit: A circuit with a continuous conducting path
v. Open Circuit: When no current flow

Ohm's Law: Resistance and Resistors
ii. Graphs

1) $f(V)=I ; \frac{\Delta I}{\Delta V}=\frac{1}{R}$
iii. Voltage Drop/Potential Drop: An electric potential decrease
iv. Resistivity of wires: $R=\frac{0 \%}{\underline{\sigma}}$
c. Electric Power:
i. Power: $P=I V$
ii. Watt: $1 W=1 \frac{( }{)}$
III. DC Circuits
a. EMF and Terminal Voltage
i. Electromotive force: Coverts other forms of energy to electric
ii. Internal Resistance: The resistance in the power source
iii. Terminal Voltage: $V_{*_{+}}=V_{*}-V_{+}$
ine
iii. Terminal Voltage: $V_{*}=V_{*}-V_{+}$
b. Resistance in Series and in Parallel
i. Series Circuits

Properties
a) $I,=I=I$
b) $R_{r^{\prime}}=R_{-}+R_{\text {. }}$.
d) Ohm's Law Applied: $V=I R=I\left(R_{-}+R\right)$

Changes to circuit

| Net Change | Voltage | Resistance | Current |
| :--- | :--- | :--- | :--- |
| Voltage Increase | Increase | Constant | Increase |
| Voltage Decrease | Decrease | Constant | Decrease |
| Resistor Added | Constant | Increase | Decrease |
| Resistor Removed | Constant | Decrease | Increase |
| Current Increase | Increase | Constant | Increase |
| Current Decrease | Decrease | Constant | Decrease |

ii. Parallel

1) Properties
a) $I_{V}=I_{-}+I$
b) $V_{1}=V_{-}+V$
c) $\frac{1}{R_{s}}=\frac{1}{R_{-}}+\frac{1}{R_{.}} ; R_{,}=\frac{R_{-} \times R_{.}}{R_{-}+R_{.}}$
2) Changes to circuit
Changes to circuit

| Net Change | Voltage | Resistance | Current |
| :--- | :--- | :--- | :--- |
| Voltage Increase | Increase | Constant | Increase |
| Voltage Decrease | Decrease | Constant | Decrease |
| Resistor Added | Constant | Decreases | Increase |
| Resistor Removed | Constant | Increase | Decrease |
| Current Increase | Increase | Constant | Increase |
| Current Decrease | Decrease | Constant | Decrease |

iii. Common Examples: Series + Parallel as Bulbs

1) Description: $R$. seried to $R_{\$}, R_{/}$, and $R_{0}$ as parallel
2) Changes

|  | $R_{-}$ | $R_{\$}$ | $R_{l}$ | $R_{0}$ |
| :--- | :--- | :--- | :--- | :--- |
| No Change | Brightest | Lowest | Lowest | Lowest |
| $R_{\text {_ }}$ Increase | Dimmer | Dimmer | Dimmer | Dimmer |
| $R_{\$ 10}$ Increase | Dimmer | Increase | Increase | Increase |
| $R_{\$ 10}$ Decrease | Increase | Dimmer | Dimmer | Dimmer |

c. Kirchhoff's Rules
. Junction (1st) Rule: At any junction point, the sum of all currents entering the junction must equal the sum of all currents leaving the junction
ii. Loop (2nd) Rule: The sum of the changes in potential around any closed path of a circuit must be zero
ii. Solving common problems for direction and magnitude:

1) Using the junction rule, we can determine that at a specific junction, the sum of inputs must equal the output. Example: $I .+I_{\$}=I$
2) Using the loop rule (positive to negative), generate equations with $V-$
I. $R .=0$, current with the opposite directions are negative (ie add instead of subtract)
3) Solve as a system of equations, if a current is negative, reverse the direction
d. Brightness
. Brightness is determined by power
$P=I V=I^{\$} R=\frac{V^{\$}}{R}$
