1. D

All objects fall at the same rate
2. B
$W_{F}=\frac{1}{2} m v_{0}^{2}-\frac{1}{2} m v_{f}^{2}$
$\mu m g D=\frac{1}{2} m v_{0}^{2}-\frac{1}{2} m v_{f}^{2}$
$\frac{1}{2} g D=\frac{1}{2} v_{0}^{2}-\frac{1}{2} v_{f}^{2}$
$v_{f}=0 \frac{m}{s}$
$p=m v=48 \mathrm{~kg} \times \frac{m}{s}$
3. B.

Point B is Point $\mathrm{A}+\mathrm{C}$
Point A and C get swapped at 0.4
seconds
4. C
$m g y_{0}=m g y_{f}+0.6 J$
$y_{f}=1.2 m$
5. A

Gravitational potential energy does not decrease, which means B, C, and D are incorrect
6. B.

Velocity is the slope of the line. Find the slope of the line at the specific point the retrieve velocity
7. C .

It's around 4
8. D.

Because period is around $\frac{1}{2} s$, using
$f=\frac{1}{T}$, solve for f
9. D

$$
\begin{aligned}
& F=\sqrt{10^{2}+10^{2}} \\
& F=10 \sqrt{2}
\end{aligned}
$$

10. A
$\sin \theta=\frac{y}{3.6 m}$
$y=1.8 m$
$m_{A} g y=\frac{1}{2} m_{A} v^{2}$
$g y=\frac{1}{2} v^{2}$
$v=6 \frac{m}{s}$
$p=m_{A} v$
$m_{A} v_{0}=\left(m_{A}+m_{B}\right) v_{f}$
$v_{f}=2.4 \frac{\mathrm{~m}}{\mathrm{~s}}$
11. D

This is because at the end of the day, the student still has to do mgywork on the box
12. B

The original force would be $5 F$, the new force is $4 F$, thus meaning that the new force is $\frac{4}{5}$ of the original force
13. C
$L=\tau t$
14. B

No idea (Most work)
15. B
16. A
17. C

Momentum will increase
18. B
19. B

Calculate voltage from left branch as voltage is the same between the two branches
20. D
21. D
22. C

Momentum is $m v$

23. D

$$
-\frac{m^{2}}{r}-2\left(\frac{2 m^{2}}{r}\right)
$$

24. D
25. C
26. D

It is equal to the tension
27. B
28. D
29. C

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

30. D

Use this to determine wavelength
31. C

If F is applied R distance away, R must be $\frac{1}{2}$ of the original if the force is going to be $2 F$. The torque need to be equal for equilibrium
32. B.

Horizontal is not going to be affected by this bounce because the ceiling is frictionless. Therefore it can only be A or B. The elastic bounce will cause velocity to instantly become negative, so it has to be B
33. D.
$v=r \omega$
34. B.

Elastic collisions maintain kinetic
energy, inelastic ones lose kinetic energy
35. D.

The force that pushes Astronaut X pulls
on Astronaut Y. When Astronaut Y
catches it, the astronauts stop moving.
36. A.

Solve for k using $F=k x$, then
substitute into $U=\frac{1}{2} k x^{2}$
37. A, C
38. C, D

Answers cannot be A , as there is a mechanical force
39. A, D
40. A, C

