1. D

All objects fall at the same rate

2. B

$$\begin{split} W_{F} &= \frac{1}{2}mv_{0}^{2} - \frac{1}{2}mv_{f}^{2} \\ \mu mgD &= \frac{1}{2}mv_{0}^{2} - \frac{1}{2}mv_{f}^{2} \\ \frac{1}{2}gD &= \frac{1}{2}v_{0}^{2} - \frac{1}{2}v_{f}^{2} \\ v_{f} &= 0\frac{m}{s} \\ p &= mv = 48kg \times \frac{m}{s} \end{split}$$

3. B.

Point B is Point A + C Point A and C get swapped at 0.4 seconds

4. C

$$mgy_0 = mgy_f + 0.$$

$$y_f = 1.2m$$

5. A

Gravitational potential energy does not decrease, which means B, C, and D are incorrect

6J

6. B.

Velocity is the slope of the line. Find the slope of the line at the specific point the retrieve velocity

7. C.

It's around 4

8. D.

Because period is around $\frac{1}{2}s$, using

$$f = \frac{1}{T}$$
, solve for f

9. D

10.

$$F = \sqrt{10^2 + 10^2}$$
$$F = 10\sqrt{2}$$
$$A$$
$$aim 0 = -\frac{y}{2}$$

$$y = 1.8m$$

$$m_A gy = \frac{1}{2}m_A v^2$$

$$gy = \frac{1}{2}v^2$$

$$v = 6\frac{m}{s}$$

$$p = m_A v$$

$$m_A v_0 = (m_A + m_B) v_f$$

$$v_f = 2.4 \frac{m}{s}$$

11. D

This is because at the end of the day, the student still has to do *mgy*work on the box

12. B

The original force would be 5*F*, the new force is 4*F*, thus meaning that the new force is $\frac{4}{5}$ of the original force

- 13. C
 - $L = \tau t$
- 14. B

No idea (Most work)

- 15. B
- 16. A

17. C

Momentum will increase

- 18. B
- 19. B

Calculate voltage from left branch as voltage is the same between the two branches

- 20. D
- 21. D
- 22. C

23.

Momentum is *mv*

$$\frac{D}{-\frac{m^2}{r}-2(\frac{2m^2}{r})}$$

- 24. D
- 25. C
- 26. D

It is equal to the tension

- 27. B
- 28. D

29. C

$$T = 2\pi \sqrt{\frac{m}{k}}$$

30. D

Use this to determine wavelength

31. C

If F is applied R distance away, R must

be $\frac{1}{2}$ of the original if the force is going

to be 2F. The torque need to be equal for equilibrium

32. B.

Horizontal is not going to be affected by this bounce because the ceiling is frictionless. Therefore it can only be A or B. The elastic bounce will cause velocity to instantly become negative, so it has to be B

33. D.

 $v = r\omega$

34. B.

Elastic collisions maintain kinetic energy, inelastic ones lose kinetic energy

35. D.

The force that pushes Astronaut X pulls on Astronaut Y. When Astronaut Y catches it, the astronauts stop moving.

36. A.

Solve for k using F = kx, then substitute into $U = \frac{1}{2}kx^2$

- 37. A, C
- 38. C, D

Answers cannot be A, as there is a mechanical force

39. A, D

40. A, C