I. Inverse Variation
a. Classifying Equations

None $\quad x$
Inverse $\quad a / x ; x \neq 0$
b. Classifying Data:

None $\quad x y$ and y / x are not constant
Direct $\quad \mathrm{y} / \mathrm{x}$ is constant
hiverse xy is consta
a. Rational Function Form: $\mathrm{f}(\mathrm{x})=\mathrm{p}(\mathrm{x}) / \mathrm{q}(\mathrm{x})$
i. Simple Rational Function: $y=a / x$

1) Has the same asymptotes, domain and range as $f(x)=1 / x$ 2) Graphing Translations with $y=a /(x-h+k$

Step 1 Draw the asymptotes $\mathrm{x}=\mathrm{h}$ and $\mathrm{y}=\mathrm{k}$ Step 2 Plot points to the left and to the right of the
ertical asymptote
Step 3 Draw the two branches of the hyperbola so
hat they pass through the plotted points and approach the asymptotes
ii. Other Rational Functions: $\mathrm{y}=(\mathrm{ax}+\mathrm{b}) /(\mathrm{cx}+\mathrm{d})$

1) Vertical Asymptote: $x=-d / \mathrm{c}$
2) Covert y Asymptote. $y=a / c$
) Covert $\mathrm{y}=(\mathrm{ax}+\mathrm{b}) /(\mathrm{cx}+\mathrm{d})$ to $\mathrm{y}=\mathrm{a} /(\mathrm{x}-\mathrm{h}+\mathrm{k}$ using long
division or sythentic division
II. Multiplying and Dividing Rational Expressions
a. Rational Expression: A fraction whose numerator and denominator are nonzero
polynomials
b. Simplified Form: When a ration expression's numerator and denominator have no
mmon factors
c. Simplifying Rational Expressions: $\mathrm{ac} / \mathrm{bc}=\mathrm{a} / \mathrm{b}$
i. Tip: Factor the polynomial to find common factors
d. Multiplying Rational Expressions: $a / b \times c / d=a c / b d ; b, d \neq 0$
i. Tip: Factor the polynomial to find common factors to simplify
e. Dividing Rational Expressions: $\mathrm{a} / \mathrm{b} \div \mathrm{c} / \mathrm{d}=\mathrm{ad} / \mathrm{bc} ; \mathrm{b}, \mathrm{c}, \mathrm{d} \neq 0$
i. Tip: Factor the polynomial to find common factors to simplify
IV. Adding and Subtracting Rational Expressions
a. Adding and Subtracting with Like Denominators:
i. Addition: $\mathrm{a} / \mathrm{c}+\mathrm{b} / \mathrm{c}=(\mathrm{a}+\mathrm{b}) / \mathrm{c} ; \mathrm{c} \neq 0 ; \mathrm{d} \neq 0$
ii. Subtraction: $\mathrm{a} / \mathrm{c}-\mathrm{b} / \mathrm{c}=(\mathrm{a}-\mathrm{b}) / \mathrm{c}$
b. Adding and Subtracting with Unlike Denominators

Addition: $\mathrm{a} / \mathrm{c}+\mathrm{b} / \mathrm{d}=(\mathrm{ad}+\mathrm{bc}) / \mathrm{cd}$
ii. Subtraction: $\mathrm{a} / \mathrm{c}-\mathrm{b} / \mathrm{d}=(\mathrm{ad}-\mathrm{bc}) / \mathrm{cd}$
V. Solving Rational Equations
a. Cross multiplication: $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d} ; \mathrm{ad}=\mathrm{bc}$
I. Defining and Using Sequences and Series
a. Sequence: An ordered list of numbers
i. Domain: Relative position of each term
ii. Range: Terms of the sequence
b. Series: When the terms of a sequence are added together
i. Summation Notation (Sigma Notation): Used to write a series 1) $\sum 24$ ($\left.\mathrm{b}=\mathrm{c}\right)^{\wedge}$ 縎d
$\begin{array}{ll}\text { a } & \text { Name } \\ \text { a } & \text { Upper limit of Summation }\end{array}$
Index of Summation
Lower limit of summation
Rule
 Sum of first n positive integers $\quad \sum 24 _(\mathrm{i}=1)^{\wedge} \mathrm{n} \mathrm{i}=(\mathrm{n}(\mathrm{n}+1)) / 2$

$=(\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)) / 6$
a. Arithmetic Sequence: Where the difference between consecutive terms is constant (common difference or d)
constant)
i. Testing if a sequence is arithmetic: $\mathrm{d}=\mathrm{a} _(\mathrm{n}+1)-\mathrm{a} _\mathrm{nd}$ (d should be

Symbol	Name
a_n	The nth term
a_1	The first term

d The first term
The common difference
b. Arithmetic Series: The expression formed by adding the terms of an arithmetic sequence
i. The Sum of a Finite Arithmetic Series: $\mathrm{S}_{-} \mathrm{n}=\mathrm{n}\left(\left(\mathrm{a} _1+\mathrm{a} _\mathrm{n}\right) / 2\right)$
III. Analyzing Geometric Sequences and Series
a. Geometric Sequence: Where the ratio of any term to the previous term is constant (common ratio or r)

Testing if a sequence is geometric: $\mathrm{r}=\mathrm{a}(\mathrm{n}+1) / \mathrm{a} \mathrm{n}$ (r should be constant) Rule for Geometric Sequences: $\mathrm{a}_{\mathrm{n}} \mathrm{n}=\mathrm{a} _1 \mathrm{r}^{\wedge}(\mathrm{n}-1)$
Symbol Name
$\begin{array}{ll}\text { a_n } & \text { The nth term } \\ \text { a_1 } & \text { The first term }\end{array}$
r The common ratio
b. Geometric Sequence: The expression formed by adding the terms of a geometric sequence
V. Finding Sums of Infinite Geometric Series
a. Partial Sum: The sum S_n to the first n terms of an infinite series (may be approaching limiting value)
b. The Sum of an Infinite Geometric Series: $\mathrm{S}=\mathrm{a}_{-} 1 /(1-\mathrm{r}) ; \mathrm{r} \mid<1$
. Using Recursive Rules with Sequences
a. Explicit Rule: Gives a_n as a function of the term's position n in the sequence
b. Recursive Rule: Gives the beginning term(s) of a sequence
c. Recursive Equation: Tells how a_n is related to one or more preceding term 1. Recursive Equations for Arithmetic and Geometric Sequences

1) Arithmetic Sequence: $a_{\text {_ }} \mathrm{n}=\mathrm{a}(\mathrm{n}-1)+\mathrm{d}$
2) Geometric Sequence: a_n=ra_n-1
I. Right Triangle Trigonometry
a. Right Triangle Definitions of Trigonometric Functions
$\sin \theta=$ Opposite/Hypotenuse $\cos \theta=$ Adjacent/Hypotenuse $\tan \theta=$ Opposite/Adjacent $\csc \llbracket \theta=$ Hypotenuse/Opposite $\rrbracket=1 / \sin \theta \quad \sec \theta=$ Hypotenuse $/$ Adjacent $=1 / \cos \theta$
cot $\theta=$ Adjacent/Opposite $=1 / \tan \theta$
II. Angles and Radian Measure
a. Standard Position: When an angle's vertex is at the origin and its initial side lies on the positive x-axis
b. Coterminal: When an angles terminal sides coincide
c. Radian: The measure of an angle in standard position whose terminal side intercepts an arc of length r
d. Converting Between Degrees and Radians
i. Degrees to Radians: $\pi / 180$
i. Radians to Degrees: $\left(180^{\circ}\right) / \pi$
e. Sector: A region of a circle that is bounded by two radii and an arc of the circle
f. Central Angle: The angle θ formed by the sector
g. Arc Length and Area of Sector:
ii. Area: $\mathrm{A}=1 / 2 \mathrm{r}^{\wedge} 2 \theta$
II. Trigonometric Functions of Any Angle
a. General Definitions of Trigonometric Functions
$\sin \theta=\mathrm{y} / \mathrm{r} \quad \csc \theta=\mathrm{y} / \mathrm{r} \mathrm{r} \mathrm{y} \neq 0$
$\cos \theta=x / r \quad \sec \theta=r / x ; x \neq 0$
b.Unit Circle The
b. Unit Circle: The circle $x^{\wedge} 2+y^{\wedge} 2=1$ which has center $(0,0)$ and a radius 1
c. Quadrantal Angles: An angle in standard position whose terminal side lies on an axis
d. Reference Angle Relationships
(Bottom Right) Quadrant 2 (Top Left) \quad Quadrant 3 (Bottom Left) \quad Quadrant 4
$\begin{array}{llll}\begin{array}{c}\text { Degrees }\end{array} & 180-\theta & \theta-180 & 360-\theta\end{array}$
Radians $\begin{array}{cc}\pi-\theta & \theta-\pi\end{array} \quad 2 \pi-\theta$
e. Evaluating Trigonometric Function

Quadrant II Quadrant I
$\sin \theta, \csc \theta \quad \sin \theta, \csc \theta$
$-\cos \theta, \llbracket-\sec \rrbracket \theta$
$-\tan \theta,-\cot \theta \tan \theta, \cot \theta$
$\begin{array}{ll}-\tan \theta,-\cot \theta & \tan \theta, \text { cot } \theta \\ \text { Quadrant III } & \text { Quadrant IV }\end{array}$
$\llbracket-\sin \rrbracket \theta, \llbracket-\csc \rrbracket \theta \quad \llbracket-\sin \rrbracket \theta, \llbracket-\csc \rrbracket \theta$
$-\cos \theta, \llbracket-\sec \rrbracket \theta \quad \cos \theta, \sec \theta$
$\tan \theta, \cot \theta \llbracket-\tan \rrbracket \theta,-\cot \theta$
IV. Graphing Sine and Cosine Functions
a. Characteristics of $y=\sin \llbracket(x) \rrbracket$ and $y=\cos \llbracket(x) \rrbracket$
i. Domain: All real numbers
ii. Range: $-1 \leq y \leq 1$
iii. Amplitude:
iv. Period: 2π
b. Amplitude and Period of $\mathrm{y}=\mathrm{a} \sin (\mathrm{bx})$ and $\mathrm{y}=\mathrm{a} \cos (\mathrm{bx})$
i. Amplitude: |a|
ii. Period: $2 \pi /(|b|)$
c. Phase Shift: A horizontal translation of a periodic function (Note: You may need to factor out b to view h)
d. Graphing $\mathrm{y}=\mathrm{a} \sin \llbracket \mathrm{b}(\mathrm{x}-\mathrm{h} \rrbracket+\mathrm{k}$ and $\mathrm{y}=\mathrm{a} \cos \llbracket \mathrm{b}(\mathrm{x}-\mathrm{h} \rrbracket+\mathrm{k}$

Step 1 Identify the amplitude a, the period $2 \pi / \mathrm{b}$, the horizontal shift h , and the ertical shift k of the graph
$\begin{array}{ll}\text { Step } 2 & \text { Draw the horizontal line } \mathrm{y}=\mathrm{k} \\ \text { Step } 3 & \text { Find the five key points by translating the key points of } \mathrm{y}=\mathrm{a} \sin (\mathrm{bx}) \text { or } \mathrm{y}=\mathrm{a}\end{array}$ $\cos (b x)$ horizontally h units and vertically k units

Step 4 Draw the graph through five translated key points
Graphing Other Trigonometric Functions
a. Characteristics of $y=\tan (x)$ and $y=\cot (x)$
i. Domain

1) tan $\llbracket(x) \rrbracket$: All real numbers except odd multiples of $\pi / 2$ 2) cot $\llbracket(x) \rrbracket$: All real numbers except multiples of π
iii. Period: π
b. Period and Vertical Asymptotes of $\mathrm{y}=\mathrm{a} \tan (\mathrm{bx})$ and $\mathrm{y}=\mathrm{a} \cot (\mathrm{bx})$
. Period: π / b
ii. Vertical Asymptote

$$
\begin{aligned}
& \text { 1) } y=a \tan (b x): \text { Odd multiples of } \pi /(|b|) \text {, } \\
& \text { 2) } y=a \cot (\mathrm{bx}): \text { Multiples of } \pi /(|b|) \\
& \text {) and } y=\csc (x)
\end{aligned}
$$

c. Characteristics of $\mathrm{y}=\sec (\mathrm{x})$ and $\mathrm{y}=\csc (\mathrm{x})$
i. Domain

1) $y=\sec (x)$: All real numbers except odd multiples of $\pi / 2$
2) $y=\csc (x)$: All real numbers except multiples of π
ii. Range: $-1 \geq y \geq 1$
iii. Period: 2π
I. Modeling with Trigonometric Function
a. Frequency: The number of cycles per unit of time, which is the reciprocal of the period
b. Sinusoids: Graphs of sine and cosine functions
i. Writing sine and cosine functions: Find all values of $\mathrm{a}, \mathrm{b}, \mathrm{h}$, and k
VII. Using Trigonometric Identities
a. Trigonometric Identity: A trigonometric equation that is true for all values of the
variable for which both sides of the equation are defined
b. Fundamental Trigonometric Identities

Reciprocal Identities $\quad \csc \theta=1 / \sin \theta \quad \sec \theta=1 / \cos \theta \quad \cot \theta=1 / \tan \theta$
Tangent and Cotangent Identities $\tan \llbracket \theta=\sin \theta / \cos \theta \rrbracket \quad \cot \theta=\cos \theta / \sin \theta$
Pythagorean Identities $\quad \sin \llbracket(\theta)^{\wedge} 2+\cos \llbracket(\theta)^{\wedge} 2 \rrbracket=1 \rrbracket \quad 1+\tan \rrbracket$
$(\theta)^{\wedge} 2=\sec \llbracket(\theta)^{\wedge} 2 \rrbracket \rrbracket \quad 1+\cot \llbracket(\theta)^{\wedge} 2=\csc \llbracket(\theta)^{\wedge} 2 \rrbracket \rrbracket$
Cofunction Identities
$1+\cot \llbracket(\theta)^{\wedge} 2=\csc$
$\sin \llbracket(\pi / 2-\theta)=\cos \theta \rrbracket$
$\cos \llbracket(\pi / 2-\theta)=\sin \theta \rrbracket$
$(\pi / 2-\theta)=\cot \theta$
$\sin \llbracket(-\theta)=-\sin \theta \rrbracket$
$\cos \llbracket(-\theta)=\cos \theta \rrbracket$
$\tan \llbracket(-\theta)=-\tan \theta \rrbracket$
VIII. Using Sum and Difference Formulas
a. Sum and Difference Formulas

Sum Formulas Difference Formulas
$\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)$
$\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)$
$\sin (\mathrm{a}-\mathrm{b})=\sin (\mathrm{a}) \cos (\mathrm{b})-\cos (\mathrm{a}) \sin (\mathrm{b})$
$\tan (\mathrm{a}+\mathrm{b})=(\tan (\mathrm{a})+\tan (\mathrm{b})) /(1-\tan (\mathrm{a}) \tan (\mathrm{b}))$
$\cos (\mathrm{a}-\mathrm{b})=\cos (\mathrm{a}) \cos (\mathrm{b})+\sin (\mathrm{a})(\mathrm{c}(\mathrm{b})$ $\cos (a-b)=\cos (a) \cos (b)+\sin (a) \sin (b)=(\tan (a)-\tan (b))(1+\tan (a) \tan (b))$
I. Sample Spaces and Probability
a. Probability Experiment: An action, or trial, that has varying results
a. Probability Experiment: An action, or trial, that has varying
c. Event: A collection of one or more outcomes in a probability
c. Event: A collection of one or more outcomes in a probability experiment
d. Sample Space: The set of all possible outcomes for an experiment
e. Probability of Event $\mathrm{P}(\mathrm{A})$: A measure of the likelihood, or chance that an event will
f. Theoretical Probability: $\mathrm{P}(\mathrm{A})=\mathrm{O} _$f/O_t

Symbol Name
O-f Number of favorable outcomes
$\mathrm{O}_{\mathrm{-}} \mathrm{t}$ Probability of the number of outcomes
g. Probability of the Complement of an Event: $\mathrm{P}(\mathrm{A})=1-\mathrm{P}(\mathrm{A})$
h. Geometric Probability: A probability found by calculating a ratio of two lengths, areas,
i. Exp

Symbol Name
N_s Number of successe
Number of trials
a. Independent Events: Two events in which the occurrence of one event does not affect the occurrence of another even
i. Probability of Independent Events: $\mathrm{P}(\mathrm{A} \& \mathrm{~B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
b. Dependent Events: Two events in which the occurrence of one event does affect th ccurrence of the other event
i. Conditional Probability $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$: The probability that $\mathrm{P}(\mathrm{B})$ occurs given hat $\mathrm{P}(\mathrm{A})$ has occurred
ii. Probability of Dependent Events: $\mathrm{P}(\mathrm{A} \& \mathrm{~B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B} \mid \mathrm{A})$ III. Two-Way Tables and Probability
a. Two-Way Table: A frequency table that displays data collected from one source that belongs to two different categories
i. Joint Frequency: Each entry in a two-way table
ii. Marginal Frequencies: The sum of the rows and columns in a two-way

b. Relative and Conditional Relative Frequencie

i. Joint Relative Frequency: The ratio of frequency that is not in the total row or the total column to the total number of values or observations in a two-way table ii. Marginal Relative Frequency: The sum of the join relative frequency in a row or a column in a two-way table
iii. Conditional Relative Frequency: A ratio of a joint relative frequency to
the marginal relative frequency in a two-way tabl
IV. Probability of Disjoint and Overlapping Events
a. Compound Event: The union or intersection of two events
i. Disjoint/Mutually Exclusive: Two events that have no outcomes in
common
ii. Probability of Compound Events:

1) Any two event: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \& \mathrm{~B})$
2) Disjoint/Mutually Exclusive Events: $P(A \| B)=P(A)+P(B)$
v. Permutations and Combinations
a. n Factorial: The product of the integer range 1 to n , for any positive integer
b. Permutations: An arrangement of objects in which order is importan
. The number of permutations of n objects: $\mathrm{nP} \mathrm{P}_{-} \mathrm{n}=\mathrm{n}$!
ii. The number of permutations of n objects taken r at a time
nP_r=n!/(n-r)!
c. Combinations: A selection of objects in which order does not important i. The number of combinations of n objects taken r at a time
nC _r r n !/($\mathrm{n}-\mathrm{r})!\times \mathrm{x}!$!
d. Binomial Theorem: $(a+b)^{\wedge} n=n C _0 a^{\wedge} n b^{\wedge} 0+\ldots+n C _r a^{\wedge}(n-r) b^{\wedge}$ I. Binomial Distributions
a. Random Variable: A variable whose value is determined by the outcomes of a robability experiment
b. Probability Distribution: A function that gives the probability of each possible value of a andom variable
c. Binomial Distribution: A type of probability distribution that shows the probabilities of the outcomes of a binomial experiment
d. Binomial Experiment: An experiment in which there are a fixed number of independent trials, exactly two possible outcomes for each trial, and the probability of success is the same for each trial
i. The probabiltiy of exactly k successes in n trials: $\mathrm{P}(\mathrm{k})=\mathrm{nC} \mathrm{C}_{-} \mathrm{k} \mathrm{p}^{\wedge}$
$(1-\mathrm{p})^{\wedge}(\mathrm{n}-\mathrm{k})$
istribution
Using Normal Distributions
a. Normal Distribution: A bell-shaped curve called a normal curve that is symmetric about a. Normal Distribution: A bell-s
he mean
b. Areas Under a Normas of $\mu \pm z \alpha$ Percentage
$\begin{array}{ll}\text { Areas of } \mu \pm z \alpha \text { Percenta } \\ \text { Total } & 100 \%\end{array}$
$\begin{array}{ll}\text { Total } & 100 \% \\ \mathrm{x}=1 & 68 \% \\ \mathrm{x}=2 & 95 \% \\ \mathrm{x}=3 & 99.7 \%\end{array}$
$\mathrm{x}=3 \quad 99.7 \%$
Areas of $\mu \pm \mathrm{za}$ Percentage
34%
13.5%
13.5\%
2.35\%
0.15\%
c. Normal Distributions
i. Bell Shaped and Symmetric
3) Histogram has a normal distributions
4) Mean $=$ Median
ii. Skewed Left
) Histogram does not have normal distribution 2) Mean < Median (Most data is to the right of the mean)
iii. Skewed Right
5) Mean $>$ Median (Most data is to the left of the mean)
I. Populations, Samples, and Hypotheses
a. Population: The collection of all data, such as response, measurements, or counts, that you want information about
b. Sample: A subset of a population
c. Sample Space: All possible combinations
d. Parameter: A numerical description of a population characteristic (Typically denoted with "all")
e. Statistic: A numerical description of a sample characteristic (Typically denoted with a some")
a. Rand Data f being selected
b. Types of Samples

Sample Name Description
Self-Selected Sample A sample in which members of a population can volunteer to
be in the sample
Systematic Sample
A sample in which a rule is used to select members of .
Stratified Sample
A sample in which a population is divided into smaller group
Cluster Sample A sample in which a population is divided into groups,
called clusters, and all of the members in one or more of the clusters are randomly selected Convenience Sample A sample in which only members of a population who are
easy to reach are selected
c. Recognizing Bias in Sampling

Bias: An error that results in a misrepresentation of a population
ii. Unbiased Sample: A sample that is representative of the population that
you want information about
e population
opulation
d. Methods of Collecting Data
Method Name Descring Data
Experiment A method that imposes a treatment on individuals in order to collect data on heir response to the treatmen

Observational Study
Individuals are observed and variables are measured without
controlling the individuals or their environment
$\begin{array}{ll}\text { Survey } & \text { An investigation of one or more characteristics of a population } \\ \text { Simulation }\end{array}$
Simulation The use of a model to reproduce the conditions of a situation or process so
that the simulated outcomes closely match the real-world outcomes
e. Recognizing Bias in Survey Questions
naccurate results

1) Encourage a particular response
2) Are too sensitive to answer truthfully
3) Do not provide enough information to give an accurate

opinion

4) Address more than one issue
IV. Experimental Design
a. Controlled Experiment: An experiment in which two groups are studied under identical onditions with the exception of one variable
i. Control Group: The group under ordinary conditions that is subjected to
no treatment during an experiment
experiment
b. Randomized Comparative Experiment: An experiment in which subjects are randomly assigned to the control group or the treatment group

Randomization: A process of randomly assigning subjects to differen
ii. Placebo: A harmless, unmedicated treatment that resembles the actual
atment
c. Randomized Comparative Experiment vs. Observational Studies
i. Randomized Comparative Experiments can make valid cause-and-effect
ii. Observational Studies can identify correlation between variables, but not
d. Replication: The repetition of an experiment under the same or similar conditions to
mprove the validity of the experiment
V. Making Inferences from Sample Surveys
a. Descriptive Statistics: The branch of statistics that involves the organization,
ummarization, and display
b. Inferential Statistics: The branch of statistics that involves using a sample to draw
onclusions about a population
c. Margin of Error: The limit on how much the responses of the sample would differ from
the responses of the population
i. Margin of Error for a random sample of size $\mathrm{n}: \pm 1 / \sqrt{n}$
I. Making Inferences from Experiments
a. Resampling data using a simulation
Step $1 \quad$ Assign each value a integer key
$\begin{array}{ll}\text { Step 1 Assign each value a int } \\ \text { Step } 2 & \text { Randomly sort the keys }\end{array}$
Step 3 Using the same index, retrieve the new sorted keys

I. Hyperbolas

a. Hyperbola: The set of all points P in a plane such that the difference of the distances between P and two fixed points (foci) are constant

$$
\begin{aligned}
& \text { fixed points (toci) are constant } \\
& \text { i. Vertex: The point where the line through the foci intersects the hyperbole }
\end{aligned}
$$ ii. Transverse Axis: The axis that joins the vertices

iii. Standard Equation of a Hyperbola with Center at the Origin

Equation Transverse Axis Asymptotes Vertice
Focus
$x^{\wedge} 2 / a^{\wedge} 2-y^{\wedge} 2 / b^{\wedge} 2=1 \quad$ Horizontal $\quad y= \pm b / a x \quad(\pm a, 0)$
$\left(\pm v\left(a^{\wedge} 2+b^{\wedge} 2\right), 0\right)$
$y^{\wedge} 2 / a^{\wedge} 2-x^{\wedge} 2 / b^{\wedge} 2=1 \quad$ Vertical $\quad y= \pm a / b x \quad(0, \pm a)$
$\left.\left(0, \pm \sqrt{\left(a^{\wedge} 2+b^{\wedge} 2\right.}\right)\right)$

1) Quickly solving for Transverse Axis using term
comparison

> a) Horizontal: y_t<0 b) Vertical: y $\gg 0$
II. Ellipses
a. Ellipse: The set of all points P in a plane such that the sum of the distances between P and two fixed points (foci) are constant
. Vertex: The point where the line through the foci intersects the ellipse
ii. Major Axis: The axis that joins the vertices
iii. Co-Vertices: The point where the line perpendicular to the major axis
intersects the ellips
v. Minor Axis: The axis that joins the co-vertices
v. Standard Equation of an Ellipse with Center at the Origin
$\begin{array}{lll}\text { Equation Major Axis } & \text { Vertices } \\ x^{\wedge} \wedge / a^{\wedge} \wedge 2+y^{\wedge} 2 / b^{\wedge} 2=1 & \text { Co-Vertices Focus }\end{array}$
$\mathrm{x}^{\wedge} 2 / \mathrm{a}^{\wedge} 2+\mathrm{y}^{\wedge} 2 / \mathrm{b}^{\wedge} 2=1 \quad$ Horizontal $\quad(\pm \mathrm{a}, 0) \quad(0, \pm \mathrm{b})$
$\left.\left(\pm V_{\left(a^{\wedge} \wedge-b^{\wedge}\right.} 2\right), 0\right)$
$\chi^{\wedge} 2 / b^{\wedge} 2+y^{\wedge} 2 / a^{\wedge} 2=1 \quad$ Vertical $\quad(0, \pm a) \quad(\pm b, 0)$
$\left(0, \pm \sqrt{ }\left(a^{\wedge} 2-b^{\wedge} 2\right)\right)$

1) Quickly solving for Major Axis using denominator
comparison
a) Horizontal: $x_{-} d>y d$
b) Vertical: $y_{-} \mathrm{d}>\mathrm{x}_{-} \mathrm{d}$
III. Conic Sections
a. Conic Sections/Conics: Formed when a plane intersects a double-napped cone
b. Standard Form of Equations of Translated Conics

Circle
$\left(x-h^{\wedge} 2+(y-k)^{\wedge} 2=r^{\wedge}\right.$
Prabol Horizontal Axis Vertical Axis

Ellipse $\quad(x)^{\wedge}$
Hyperbola (\quad - $12 / h^{\wedge} 2-(y-k) \wedge / b^{\wedge} 2=1(y-k)^{\wedge} 2 / a^{\wedge} 2-\left(x-h^{\wedge} 2 / b^{\wedge} 2=1\right.$
c. Classifying Conics Using Their Equations

General Second-Degree Equation: ax^2+bxy $+\mathrm{cy} \wedge 2+\mathrm{dx}+\mathrm{ey}+\mathrm{f}=0$
Discriminant Type of Conic
$\begin{array}{ll}b^{\wedge} 2-4 a c<0 ; b=0 ; a=c & \text { Circle } \\ b^{\wedge} \wedge-4 a c<0 ; b \neq 0 \| a z c & \text { Ellips }\end{array}$
$\mathrm{b}^{\wedge} 2-4 \mathrm{ac}=0 \quad$ Parabola
$b^{\wedge} 2-4 a c>0 \quad$ Hyperbola
I.Long Division (Polynomials)
Step 1 Divide the leading coefficient of the dividend with the leading coefficient of the divisor and add it to the quotient
Step $2 \quad$ Multiply the result from Step 1 with the divisor and add it to the remainder Step 3 Subtract the remainder
Step 4 Repeat except using the remainder from Step 3 until not divisible
II. Synthetic Division (Polynomials)

Step 1 Put coefficients of the dividend each in the box in descending order (i.e.
ax^4+bx^3+cx^2...)
Step $2 \quad$ Solve for x in the divisor and put the answer outside the box
Step 3 Bring down the first coefficient, and multiply the coefficient with the
Step 4 Add the answer from Step 3 to the following coefficient, and repeat Step 3 except by using the following coefficient
III. Completing the Square: $\mathrm{x}^{\wedge} 2+\mathrm{bx}+(\mathrm{b} / 2)^{\wedge} 2=(\mathrm{b} / 2)^{\wedge} 2=(\mathrm{x}+\mathrm{b} / 2)^{\wedge} 2$

