Skip to content

Volume Ratios

This take home quiz will revolve around volumes and the cylinder that it is taken from (also, did you notice the pun?)

  1. Let the function \(f(t) = at\) where \(a\) is a positive real number. If we revolve the area under the curve from \(0 \leq t \leq x\), where x is a positive real number, around the x-axis, it will create a familiar shape. Draw a sketch of this situation on a set of axes. What is the volume of this solid, in terms of \(x\)?

    cone

    \[ \begin{align} V(x) &= \pi \int_0^x f^2(t) dt\\ &= \pi \int_0^x (at)^2 dt\\ &= \pi a^2 \int_0^x t^2 dt\\ &= \pi a^2 \left[\frac{t^3}{3}\right]_0^x\\ &= \frac{\pi}{3}a^2x^3 \end{align} \]
  2. Now consider the cylinder that is created when revolving the region under the constant function \(y=f(x)\) (where \(f\) is the function from before) in the first quadrant around the x-axis. Draw this cylinder on the same set of axes as before. What is the ratio of the volume of the familiar shape to the cylinder? (Hint: You should recognize that you just proved a formula from geometry).

    cylinder

    \[ \begin{align} C(x) &= \pi x \int_0^x f^2(x)dt\\ &= \pi x \cdot (ax)^2\\ &= \pi a^2 x^3\\\\ \frac{V(x)}{C(x)} &= \frac{\frac{\pi}{3}a^2x^3}{\pi a^2 x^3}\\ &= \frac{1}{3} \end{align} \]
  3. Now let \(g(t)=at^3\). Find the ratio of the solid formed when revolving the region under \(g(t)\) from \(0 \leq t \leq x\) around the x-axis to the cylinder that it "sits" in.

    \[ \begin{align} \pi \int_0^x g(t)^2 dt &= \pi \int_0^x (at^3)^2 dt\\ &= \pi a^2 \int_0^x t^6 dt\\ &= \pi a^2 \left[\frac{t^7}{7}\right]_0^x\\ &= \frac{\pi}{7}a^2x^7\\\\ C_2(x) &= \pi x \int_0^x g(x)^2 dt\\ &= \pi x \cdot (ax^3)^2\\ &= \pi a^2 x^7\\\\ \frac{V(x)}{C_2(x)} &= \frac{\frac{\pi}{7}a^2x^7}{\pi a^2 x^7}\\ &= \frac{1}{7} \end{align} \]
  4. Let \(h(t) = a \sqrt{t}\). Do the same thing as the previous question.

    \[ \begin{align} \pi \int_0^x h(t)^2 dt &= \pi \int_0^x (a\sqrt{t})^2 dt\\ &= \pi a^2 \int_0^x t dt\\ &= \pi a^2 \left[\frac{t^2}{2}\right]_0^x\\ &= \frac{\pi}{2}a^2x^2\\\\ C_3(x) &= \pi x \int_0^x h(x)^2 dt\\ &= \pi x \cdot (a\sqrt{x})^2\\ &= \pi a^2 x^2\\\\ \frac{V(x)}{C_3(x)} &= \frac{\frac{\pi}{2}a^2x^2}{\pi a^2 x^2}\\ &= \frac{1}{2} \end{align} \]
  5. Show that for any power function of the form \(f(t) = at^k\), where \(a\) and \(k\) are positive real numbers, that the ratio of the volume and the cylinder that it "sits" in is always a constant.

    \[ \begin{align} \pi \int_0^x f(t)^2 dt &= \pi \int_0^x (at^k)^2 dt\\ &= \pi a^2 \int_0^x t^{2k} dt\\ &= \pi a^2 \left[\frac{t^{2k+1}}{2k+1}\right]_0^x\\ &= \frac{\pi}{2k+1}a^2x^{2k+1}\\\\ C_4(x) &= \pi x \int_0^x f(x)^2 dt\\ &= \pi x \cdot (ax^k)^2\\ &= \pi a^2 x^{2k+1}\\\\ \frac{V(x)}{C_4(x)} &= \frac{\frac{\pi}{2k+1}a^2x^{2k+1}}{\pi a^2 x^{2k+1}}\\ &= \frac{1}{2k+1} \end{align} \]

Let \(V(x)\) be the volumes that you found before and \(C(x)\) be the cylinders that you used before. You've shown \(\frac{V(x)}{C(x)}\) should be constant for power functions. Now we're going to prove a more interesting result.

  1. Let \(y = f\) be a positive, increasing, twice-differentiable function. Let \(\frac{V(x)}{C(x)} = Q\), which is a constant Q. Differentiate both sides to show that \(V = \frac{cv'}{c'}\)

    \[ \begin{align} \frac{d}{dx}\left[\frac{V(x)}{C(x)}\right] &= \frac{d}{dx}Q\\ \frac{C(x)V'(x)-V(x)C'(x)}{C(x)^2} &= 0\\ C(x)V'(x)-V(x)C'(x) &= 0\\ C(x)V'(x) &= V(x)C'(x)\\\\ V(x) &= \frac{C(x)V'(x)}{C'(x)} \quad \blacksquare \end{align} \]
  2. Use \(C(x)=\pi x\cdot f^2(x)\) and \(V(x) = \int_0^x \pi f^2(t) dt\). What is \(V'\)?

    \[ \begin{align} \frac{d}{dx}V(x) &= \frac{d}{dx}\int_0^x \pi f^2(t) dt\\ &= \pi f^2(x) \end{align} \]
  3. Let \(y=f(x)\). If \(V = \frac{cv'}{c'}\), show by implicit differentiation that

    \[ \begin{align} y^2= \frac{(y+2xy')(3xy^2y'+y^3)-(xy^3)(3y'+2xy'')}{(y+2xy')^2}\\\\ \end{align} \]
    \[ \begin{align} V'(x) &= (\frac{cv'}{c'})'\\ &= \frac{c'[c'v' + cv''] - cv'c''}{(c')^2}\\\\ C'(x) &= (\pi y^2) + 2\pi xyy'\\ &= \pi y(y + 2xy')\\\\ C''(x) &= 2\pi yy' + 2\pi yy' + 2 \pi x (y')^2 + 2\pi x yy''\\ &= 2\pi (2 yy' + x(y')^2 + xy'')\\\\ V'(x) &= \pi y^2\\ V''(x) &= 2\pi yy'\\\\ \end{align} \]
    \[ \begin{align} \small y^2 = \frac{(y+2xy')[(y+2xy')(\pi y) + (\pi xy^2)(2\pi yy') - (\pi x y^2)(\pi y^2)(2\pi) (2 yy' + x(y')^2 + xy''))(y)]}{(y+2xy')^2} \end{align} \]
    \[ \begin{align} y^{2}&=\frac{y^{4}+2xy^{3}y^{\prime}+6x^{2}y^{2}(y)^{2}-2x^{2}y^{3}y^{\prime\prime}}{(y+2xy^{\prime})^{2}}\\\\ &= (y+2xy^{\prime})(3xy^{2}y^{\prime}+y^{3})-(xy^{3})(3y+2xy^{\prime\prime}) \\ &=3xy^{3}y^{\prime}+y^{4}+6x^{2}y^{2}(y^{\prime})^{2}+2xy^{3}y^{\prime} -3xy3y'-2x^2y^3y''\\ &=y^{4}+2xy^{3}y^{\prime}+6x^{2}y^{2}(y^{\prime})^{2}-2x^{2}y^{5}y^{\prime\prime}\\ &\text{ Expansion is equivalent to the original equation} \quad \blacksquare \end{align} \]
  4. Now show that the above simplifies to \(xyy'' - xy'^2=-yy'\)

    \[ \begin{align} y^2 &= \frac{3xy^3y' + y^4 + 6x^2y^2(y')^2 + 2xy'y^3 - 2x^2y^3y''}{y^2 + 4xyy' + 4x^2(y')^2}\\ 1 &= \frac{y^2 + 6x^2(y')^2 + 2xy'y - 2x^2y''}{y^2 + 4xyy' + 4x^2(y')^2}\\\\ y^2 + 4xyy' + 4x^2(y')^2 &= y^2 + 6x^2(y')^2 + 2xy'y - 2x^2y''\\ 2yy' + 2x^2y'' &= 2x^2y''\\ xyy' -x(y')^2 &= -yy' \quad \blacksquare \end{align} \]
  5. Divide both sides by \(xyy'\) and then integrate. (Hint: If you're confused, use a u-sub)

    \[ \begin{align} \frac{xyy''}{xyy'} - \frac{x(y')^2}{xyy'} &= -\frac{yy'}{xyy'}\\ \frac{y''}{y'} - \frac{y'}{y} &= -\frac{1}{x}\\ \int \frac{y''}{y'} - \frac{y'}{y} dx &= -\int \frac{1}{x} dx\\ \ln|y'| - \ln|y| + C &= -\ln|x|\\ \end{align} \]
  6. Solve the result for \(\frac{y'}{y}\) and then integrate again. You should have shown something interesting about power functions.

    \[ \begin{align} \ln|y'| - \ln|y| &= -\ln|x| + C\\ \ln\left|\frac{y'}{y}\right| &= -\ln|x| + C\\ \frac{y'}{y} &= e^{-\ln|x| + C}\\ \frac{y'}{y} &= e^C \cdot e^{-\ln|x|}\\ \frac{y'}{y} &= e^C \cdot \frac{1}{x}\\ \int \frac{y'}{y} &= \int e^C \cdot \frac{1}{x} dx\\ \ln|y| &= e^C \cdot \ln|x| + D\\ \ln|y| &= \ln|x|^{e^C} + D\\ y &= x^D \cdot x^{e^C}\\ \end{align} \]

    The result gives us a power function.